NASA to Fight Forest Fires from Space

15228377759_4124bb19e9_k.jpg

Satellite sensors will catch forest fires before they spread.

When forest fires begin in remote regions, they can go undetected for lengthy periods of time, which lets them spread before emergency services even know they’re occurring. NASA’s Jet Propulsion Laboratory, along with San Francisco-based start-up Quadra Pi R2E, are working on a new global network of sensors on satellites, called FireSat, that could uncover forest fires much more quickly and effectively than current technologies.

At present, satellites can detect forest fires twice a day and transmit large images to Earth. The goal of the project is to send much lower-resolution images about once a minute and include their exact latitude and longitude.

Robert Staehle, lead designer of FireSat at JPL says “While many wildfires are reported by 9-1-1 calls soon after ignition, some are not, and delays in detection can lead to rapid escalation of a fire, and dramatic growth of the cost of suppression. The system we envision will work day and night for fires anywhere in the world.”

FireSat will consist of over 200 thermal infrared imaging sensors aboard satellites that will be able to detect fires within 15 minutes from the time they start, as long as they are 30 – 50 feet wide. Within three minutes of this detection, FireSat will notify emergency responders who can decide on the best approach from the ground.

If detecting forest fires isn’t enough to convince you of these sensors’ value, they will also be able to detect explosions, oil spills and other dangerous high-heat events around the world.

NASA has turned to an unlikely source of funding for this project: Kickstarter. According to their page, the campaign was developed “to present the FireSat opportunity to the general public to determine whether enough grass-roots interest exists to advance the project.” Their goal is to raise $280,000 of the necessary $30 million from the public. They hope to have the system in space and fully operational by June 2018.

NASA to Fight Forest Fires from Space

Do You Live in a Climate Change Hotspot?

Spaceborne Carbon Counter Map

Nearly half of all human carbon dioxide emissions are absorbed by plants, and NASA is monitoring this absorption.

Carbon dioxide or CO2 emissions into our planet’s atmosphere is causing climate change — a major problem that humans need to tackle and adapt to.  It is leading to warmer atmospheric temperatures, warmer and more acidic oceans, rising sea-levels, and changing and extreme weather patterns.  Although nations across the globe have committed to reducing carbon emissions, emissions will not slow in the near future, and CO2concentrations will continue to rise.

An alarming fact is that CO2 concentrations are the highest they have been in 400,000 years, and we are on track to cross the CO2 threshold of 400 parts per million (ppm).  This threshold does not mean there is going to be a climate catastrophe, but it does signal the importance of fighting climate change and how government inaction has only lead to worsening global impacts.

Luckily for us, CO2 concentrations would be much higher if it were not for plants that absorb nearly half of all human emissions each year.  NASA is very interested in this part of the carbon system and is now monitoring and tracking the absorption of CO2 by the land and ocean.

“Some years, almost all of it stays in the atmosphere and some years almost none of it remains in the atmosphere.  So in those years it must be absorbed into the ocean and land,” said Mike Freilich, the head of NASA’s Earth Science Division.

 

NASA scientists have been tracking CO2 movement using models and satellites such as NASA’s Orbiting Carbon Observatory-2 (OCO-2).  “OCO-2 gathers 100,000 high quality measurements of CO2 across the globe daily,” said Annmarie Eldering, deputy project scientist of OCO-2.  The instruments used on the satellite are so sensitive that they can detect changes as small as 1 ppm over any location, allowing scientists to determine potential COhotspots.

For example, data from OCO-2 shows that there has been more CO2 over the tropical Pacific Ocean since the spring.  Scientists are unsure if this is related to our current El-Niño which is known for creating above average ocean and atmospheric temperatures, but the results are different from previously collected data.

Why is it so important to monitor and track this absorbed CO2?  Not only will it help scientists understand how the absorption of CO2 by plants may change with a changing climate, according to Lesley Ott, a NASA research who works on the carbon modeling, “The motivation of all of this is to make models better and predict how the carbon cycle is going to change over the coming years.”

The problem of climate change can no longer be ignored, and improved CO2 modeling will hopefully influence policymakers to make scientifically-informed decisions to protect our planet for generations to come.

Source: Do You Live in a Climate Change Hotspot?

Do You Live in a Climate Change Hotspot?

THIS OCTOBER SMASHED TEMPERATURE RECORDS AROUND THE WORLD

October

 

A map of temperature anomalies during October. Red shows the biggest deviation from the standard (temperatures recorded between 1951 and 1980).

If you’ve been wondering why your coats stayed in the closet and your heater remained off for the first part of fall, wonder no more. This October was the warmest on record. Ever.

Last month beat out all the other Octobers to get the title of hottest Octobersince record-keeping began in the late 1800’s. It was also the highest deviation from ‘normal’ global temperatures. Those temperatures were recorded between 1951 and 1980, and are averaged to get a general baseline. The data comes from NASA’s Goddard Institute for Space Studies, which looks at temperature changes over long periods of time (decades as opposed to days).

If it sounds like a familiar story, that’s because it is. Last winter was one of the warmest on record, even with all the snow. 2014 and 2012 were also record-breaking years, and with the addition of October to its already hot lineup, 2015 is likely to surpass both.

Extreme heat is now 4 times more likely than it was before the industrial revolution, and that shows no signs of stopping.

Source: THIS OCTOBER SMASHED TEMPERATURE RECORDS AROUND THE WORLD

THIS OCTOBER SMASHED TEMPERATURE RECORDS AROUND THE WORLD

How the Sun stole Mars’ atmosphere

The solar wind has made Mars a cold desert, and a tougher environment for would-be colonists. Alan Duffy explains the latest research.

 

Four billion years ago, Mars and Earth were like twins. Water flowed on the Martian surface beneath an atmosphere rich in carbon dioxide, oxygen, methane and water vapour. Today the Martian atmosphere is vanishingly thin, just a hundredth the density of Earth’s, and its surface water has disappeared.

Where did it all go? To find out NASA sent MAVEN – the Mars Atmosphere and Volatile Evolution spacecraft – all decked out with sensitive new instruments. It’s been orbiting the planet since last September and this November it finally answered the riddle. The solar wind blew away the Martian atmosphere. This result was the highlight of a landslide of papers published in November using data collected by MAVEN – four inScience and 40 in Geophysical Research Letters.

The first hints water used to flow on Mars came from NASA’s Viking missions in the 1970s. The orbiters beamed back pictures of valleys that looked like they’d been carved by ancient rivers. More recent landers showed fossilised ripples of lakebeds and streams known as mudstone. And just in September, instruments on the Mars Reconnaissance Orbiter detected the signatures of hydrated salts streaking down crater edges. The briny residue showed water may still be found occasionally on the surface of Mars. But it’s a drop in the ocean compared to the bodies of water that resided in the ancient lakes some four billion years ago.

Billions of years ago when the Red Planet was young, it appears to have had a thick atmosphere that was warm enough to support oceans of liquid water – a critical ingredient for life. This animation shows what Mars might have looked like at the time, before transitioning to the dusty red planet we see today.

So where did the water go? Some thought it was locked away in subsurface ice deposits. And as for the atmosphere, carbon dioxide and other gases might have chemically reacted with rocks over hundreds of millions of years, and become locked away inside Mars’ geology – similar to the way carbon dioxide in Earth’s atmosphere can get locked away as limestone.

The other possibility was that both had been lost to space: first the atmosphere, then the water, which in the thin air would simply have evaporated away. If this theory was right, the real question was, why did the atmosphere vanish in the first place? It shouldn’t have: Mars’ gravity, a third of Earth’s, is sufficiently strong to keep its atmosphere.

“Like the theft of a few coins from a cash register every day,

the loss becomes significant over time”

First off, MAVEN established that the Martian atmosphere was indeed vanishing into space. Dipping in and out of the Red Planet’s upper atmosphere, it detected wisps of ionised air escaping at the rate of about 100 grams each second. “Like the theft of a few coins from a cash register every day, the loss becomes significant over time,” says Bruce Jakosky, MAVEN principal investigator at the University of Colorado, Boulder.

MAVEN was also present when a solar storm hit Mars in March 2015.

The rate of atmospheric loss increased up to 20-fold when the storm struck. The storm was the result of a coronal mass ejection by the Sun, which hurled billions of tonnes of superhot material into space. Unlike the constant, steady stream of particles of the solar wind, these events are far more energetic and damaging. With each direct hit, more of the Martian atmosphere is lost.

The Sun had been caught in the act of planetary vandalism. MAVEN’s data showed the long suspected culprit, the solar wind (and its sometime partner in crime, solar storms), was easily capable of removing an atmosphere. While the Sun is still at work shearing away the Martian atmosphere today, four billion years ago a youthful Sun was even more tempestuous with storms that were more frequent and powerful than those of today.

So why was Earth spared this fate? Our planet is blessed with a magnetic shield that deflects the charged solar particles; Mars is not. A magnetic shield is created by a churning liquid iron core, which Earth has. Mars once had a molten core too but around four billion years ago, it cooled and solidified. Just why we have been spared this fate is not entirely understood – perhaps it is simply because Mars is smaller and lost heat more quickly. The same fate undoubtedly awaits Earth too, but not for many millions (if not billions) of years yet.

Without a liquid iron core, Mars’ magnetic field faded away. The solar wind then ripped away most of the atmosphere, leaving the oceans to evaporate into space. But the removal of its atmosphere would have taken place over a few hundred million years, so any life that existed had time to adapt to living underground; the Sun’s ultraviolet radiation would be fatal to life on the surface.

For the first time, NASA’s MAVEN spacecraft has observed the solar winds in action stripping away Mars’ atmosphere. This video shows a simulation of the solar wind striking Mars, then adds a colourful overlay of Mars’ atmosphere being removed (the new measurements taken by MAVEN).

This is good news for scientists hoping to find life on Mars, but bad news for human colonists.

Some had hoped the gases that made up the atmosphere might still be present beneath the surface, awaiting our arrival to unlock all that carbon dioxide, begin to grow plants and terraform the Red Planet. Not so: at least as far as the atmosphere goes, colonisers will need to bring their own.

Source: How the Sun stole Mars’ atmosphere

How the Sun stole Mars’ atmosphere

PLUTO HAS RED ICE AND BLUE SKIES

Pluto’s blue haze

NASA/JHUAPL/SwRI

After New Horizons sped past Pluto in July, the spacecraft turned around to look at the dwarf planet’s silhouette against the sun. The backlighting gave New Horizons some insight into the planetoid’s atmosphere, and now the first color images of the haze has revealed that Pluto’s skies are partially blue.

If you were standing on Pluto, the sky would probably actually look reddish gray, though Miriam Kramer at Mashable reports that sunrise and sunset on Pluto could have a blue hue. The way the atmospheric particles are scattering blue light is a surprise to the New Horizons scientists. It also tells them a thing or two about the composition of the atmosphere.

“That striking blue tint tells us about the size and composition of the haze particles,” said New Horizons’ Carly Howett in a press release. “A blue sky often results from scattering of sunlight by very small particles. On Earth, those particles are very tiny nitrogen molecules. On Pluto they appear to be larger–but still relatively small–soot-like particles we call tholins.”

Tholins are simple organic molecules. Scientists think Pluto’s tholins come from ultraviolet light breaking up the methane and nitrogen in the atmosphere. Those reactive particles then combine together into complex molecules. Volatile gases condense on the molecules, making them heavy enough to rain down on Pluto. This is where Pluto gets its reddish-brown tint.

A second image, released today, shows the distribution of water ice across part of Pluto’s surface. Water ice in itself is not a surprise–scientists suspected the planetoid’s mountain ranges are made of ice. Still, there are only a few places where Pluto’s water ice isn’t buried in more volatile ices, such as those made from nitrogen and methane.

Map of exposed ice on Pluto’s surface

NASA/JHUAPL/SwRI

What’s more, these water ices seem to be reddish in color, based on color maps from New Horizons.

“I’m surprised that this water ice is so red,” says Silvia Protopapa, another New Horizons team member. “We don’t yet understand the relationship between water ice and the reddish tholin colorants on Pluto’s surface.”

Source: PLUTO HAS RED ICE AND BLUE SKIES

PLUTO HAS RED ICE AND BLUE SKIES

What’s up in the night sky this month?

image

Stargazing and looking up into the night sky is always a fun thing to do. This month, it will be especially exciting because there will be a total eclipse of a supermoon, plus the opportunity to see planets and the late-summer Milky Way!

What is a supermoon?

image

A supermoon is a new or full moon that occurs when it is at, or near its closest approach to Earth in a given orbit. There are usually 4 to 6 supermoons every year.

Observers can view the total eclipse on September 27, starting at 10:11 p.m. EDT until 11:23 p.m. This event will be visible in North and South America, as well as Europe and Africa. So make sure to mark your calendars!

image

This month, you will also be able to see the planets! Look for Mercury, Saturn, Pluto and Neptune in the evening sky. Uranus and Neptune at midnight, and Venus, Mars and Jupiter in the pre-dawn sky.

image

Finally, if you’re able to escape to a dark location, you might be able to see a great view of our Milky Way!

So, make sure to get outside this month and take a look at everything our night sky has to offer.

image

Source: What’s Up for September?

What’s up in the night sky this month?

NASA Selects Mission Science Instruments Searching for Habitability of Jupiter’s Ocean Moon Europa

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution.  Credits: NASA/JPL-Caltech/SETI Institute

In a major move forward on a long dreamed of mission to investigate the habitability of the subsurface ocean of Jupiter’s mysterious moon Europa, top NASA officials announced today, Tuesday, May 26, the selection of nine science instruments that will fly on the agency’s long awaited planetary science mission to an intriguing world that many scientists suspect could support life.

“We are on our way to Europa,” proclaimed John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, at a media briefing today outlining NASA’s plans for a mission dedicated to launching in the early to mid-2020s. “It’s a mission to inspire.”

“We are trying to answer big questions. Are we alone?”

“The young surface seems to be in contact with an undersea ocean.”

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, radar and spectrometers, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

“Europa has tantalized us with its enigmatic icy surface and evidence of a vast ocean, following the amazing data from 11 flybys of the Galileo spacecraft over a decade ago and recent Hubble observations suggesting plumes of water shooting out from the moon,” says Grunsfeld.

“We’re excited about the potential of this new mission and these instruments to unravel the mysteries of Europa in our quest to find evidence of life beyond Earth.”

Planetary scientists have long desired a speedy return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the surface in recent times.

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection, whose candidates include the heavy lift Space Launch System (SLS).

The solar powered probe will go into orbit around Jupiter for a three year mission.

“The mission concept is that it will conduct multiple flyby’s of Europa,” said Jim Green. director, Planetary Science Division, NASA Headquarters, during the briefing.

“The purpose is to determine if Europa is a habitable place. It shows few craters, a brown gum on the surface and cracks where the subsurface meet the surface. There may be organics and nutrients among the discoloration at the surface.”

Europa is at or near the top of the list for most likely places in our solar system that could support life. Mars is also near the top of the list and currently being explored by a fleet of NASA robotic probes including surface rovers Curiosity and Opportunity.

“Europa is one of those critical areas where we believe that the environment is just perfect for potential development of life,” said Green. “This mission will be that step that helps us understand that environment and hopefully give us an indication of how habitable the environment could be.”

The exact thickness of Europa’s ice shell and extent of its subsurface ocean is not known.

The ice shell thickness has been inferred by some scientists to be perhaps only 5 to 10 kilometers thick based on data from Galileo, the Hubble Space Telescope, a Cassini flyby and other ground and space based observations.

The global ocean might be twice the volume of all of Earth’s water. Research indicates that it is salty, may possess organics, and has a rocky sea floor. Tidal heating from Jupiter could provide the energy for mixing and chemical reactions, supplemented by undersea volcanoes spewing heat and minerals to support living creatures, if they exist.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech

“Europa could be the best place in the solar system to look for present day life beyond our home planet,” says NASA officials.

The instruments chosen today by NASA will help answer the question of habitability, but they are not life detection instruments in and of themselves. That would require a follow on mission.

“They could find indications of life, but they’re not life detectors,” said Curt Niebur, Europa program scientist at NASA Headquarters in Washington. “We currently don’t even have consensus in the scientific community as to what we would measure that would tell everybody with confidence this thing you’re looking at is alive. Building a life detector is incredibly difficult.”

‘During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Niebur told Universe Today. “These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

“The mass spectrometer has a range of 1 to 2000 daltons, Niebur told me. “That’s a much wider range than Cassini. However there will be no means aboard to determine chirality.” The presence of Chiral compounds could be an indicator of life.

Right now the Europa mission is in the formulation stage with a budget of about $10 million this year and $30 Million in 2016. Over the next three years the mission concept will be defined.

The mission is expected to cost in the range of at least $2 Billion or more.

Jupiter Moon Europa, Ice Rafting View

Here’s a NASA description of the 9 instruments selected:

Plasma Instrument for Magnetic Sounding (PIMS) — principal investigator Dr. Joseph Westlake of Johns Hopkins Applied Physics Laboratory (APL), Laurel, Maryland. This instrument works in conjunction with a magnetometer and is key to determining Europa’s ice shell thickness, ocean depth, and salinity by correcting the magnetic induction signal for plasma currents around Europa.

Interior Characterization of Europa using Magnetometry (ICEMAG)
— principal investigator Dr. Carol Raymond of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California. This magnetometer will measure the magnetic field near Europa and – in conjunction with the PIMS instrument – infer the location, thickness and salinity of Europa’s subsurface ocean using multi-frequency electromagnetic sounding.


Mapping Imaging Spectrometer for Europa (MISE)
— principal investigator Dr. Diana Blaney of JPL. This instrument will probe the composition of Europa, identifying and mapping the distributions of organics, salts, acid hydrates, water ice phases, and other materials to determine the habitability of Europa’s ocean.

Europa Imaging System (EIS) — principal investigator Dr. Elizabeth Turtle of APL. The wide and narrow angle cameras on this instrument will map most of Europa at 50 meter (164 foot) resolution, and will provide images of areas of Europa’s surface at up to 100 times higher resolution.

Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) — principal investigator Dr. Donald Blankenship of the University of Texas, Austin. This dual-frequency ice penetrating radar instrument is designed to characterize and sound Europa’s icy crust from the near-surface to the ocean, revealing the hidden structure of Europa’s ice shell and potential water within.

Europa Thermal Emission Imaging System (E-THEMIS) — principal investigator Dr. Philip Christensen of Arizona State University, Tempe. This “heat detector” will provide high spatial resolution, multi-spectral thermal imaging of Europa to help detect active sites, such as potential vents erupting plumes of water into space.

MAss SPectrometer for Planetary EXploration/Europa (MASPEX) — principal investigator Dr. Jack (Hunter) Waite of the Southwest Research Institute (SwRI), San Antonio. This instrument will determine the composition of the surface and subsurface ocean by measuring Europa’s extremely tenuous atmosphere and any surface material ejected into space.

Ultraviolet Spectrograph/Europa (UVS) — principal investigator Dr. Kurt Retherford of SwRI. This instrument will adopt the same technique used by the Hubble Space Telescope to detect the likely presence of water plumes erupting from Europa’s surface. UVS will be able to detect small plumes and will provide valuable data about the composition and dynamics of the moon’s rarefied atmosphere.

SUrface Dust Mass Analyzer (SUDA) — principal investigator Dr. Sascha Kempf of the University of Colorado, Boulder. This instrument will measure the composition of small, solid particles ejected from Europa, providing the opportunity to directly sample the surface and potential plumes on low-altitude flybys.

Source: NASA Selects Mission Science Instruments Searching for Habitability of Jupiter’s Ocean Moon Europa

NASA Selects Mission Science Instruments Searching for Habitability of Jupiter’s Ocean Moon Europa