NASA to Fight Forest Fires from Space

15228377759_4124bb19e9_k.jpg

Satellite sensors will catch forest fires before they spread.

When forest fires begin in remote regions, they can go undetected for lengthy periods of time, which lets them spread before emergency services even know they’re occurring. NASA’s Jet Propulsion Laboratory, along with San Francisco-based start-up Quadra Pi R2E, are working on a new global network of sensors on satellites, called FireSat, that could uncover forest fires much more quickly and effectively than current technologies.

At present, satellites can detect forest fires twice a day and transmit large images to Earth. The goal of the project is to send much lower-resolution images about once a minute and include their exact latitude and longitude.

Robert Staehle, lead designer of FireSat at JPL says “While many wildfires are reported by 9-1-1 calls soon after ignition, some are not, and delays in detection can lead to rapid escalation of a fire, and dramatic growth of the cost of suppression. The system we envision will work day and night for fires anywhere in the world.”

FireSat will consist of over 200 thermal infrared imaging sensors aboard satellites that will be able to detect fires within 15 minutes from the time they start, as long as they are 30 – 50 feet wide. Within three minutes of this detection, FireSat will notify emergency responders who can decide on the best approach from the ground.

If detecting forest fires isn’t enough to convince you of these sensors’ value, they will also be able to detect explosions, oil spills and other dangerous high-heat events around the world.

NASA has turned to an unlikely source of funding for this project: Kickstarter. According to their page, the campaign was developed “to present the FireSat opportunity to the general public to determine whether enough grass-roots interest exists to advance the project.” Their goal is to raise $280,000 of the necessary $30 million from the public. They hope to have the system in space and fully operational by June 2018.

Advertisements
NASA to Fight Forest Fires from Space

NASA’s New Horizons Finds Second Mountain Range in Pluto’s ‘Heart’

Pluto's mountain range

A newly discovered mountain range lies near the southwestern margin of Pluto’s Tombaugh Regio (Tombaugh Region), situated between bright, icy plains and dark, heavily-cratered terrain. This image was acquired by New Horizons’ Long Range Reconnaissance Imager (LORRI) on July 14, 2015 from a distance of 48,000 miles (77,000 kilometers) and sent back to Earth on July 20. Features as small as a half-mile (1 kilometer) across are visible.

Pluto’s icy mountains have company. NASA’s New Horizons mission has discovered a new, apparently less lofty mountain range on the lower-left edge of Pluto’s best known feature, the bright, heart-shaped region named Tombaugh Regio (Tombaugh Region).

These newly-discovered frozen peaks are estimated to be one-half mile to one mile (1-1.5 kilometers) high, about the same height as the United States’ Appalachian Mountains. The Norgay Montes (Norgay Mountains) discovered by New Horizons on July 15 more closely approximate the height of the taller Rocky Mountains.

The new range is just west of the region within Pluto’s heart called Sputnik Planum (Sputnik Plain). The peaks lie some 68 miles (110 kilometers) northwest of Norgay Montes.

This newest image further illustrates the remarkably well-defined topography along the western edge of Tombaugh Regio.

“There is a pronounced difference in texture between the younger, frozen plains to the east and the dark, heavily-cratered terrain to the west,” said Jeff Moore, leader of the New Horizons Geology, Geophysics and Imaging Team (GGI) at NASA’s Ames Research Center in Moffett Field, California. “There’s a complex interaction going on between the bright and the dark materials that we’re still trying to understand.”

While Sputnik Planum is believed to be relatively young in geological terms – perhaps less than 100 million years old – the darker region probably dates back billions of years. Moore notes that the bright, sediment-like material appears to be filling in old craters (for example, the bright circular feature to the lower left of center).

This image was acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers) and sent back to Earth on July 20. Features as small as a half-mile (1 kilometer) across are visible. The names of features on Pluto have all been given on an informal basis by the New Horizons team.

Image Credit: NASA/JHUAPL/SWRI

Source: NASA’s New Horizons Finds Second Mountain Range in Pluto’s ‘Heart’

NASA’s New Horizons Finds Second Mountain Range in Pluto’s ‘Heart’